Creep Forces in Simulations of Traction Vehicles Running on Adhesion Limit

Oldrich Polach
Bombardier Transportation
Winterthur, Switzerland

Chief Engineer Dynamics
BU Bogies, Europe
Contents

- Demand for model of creep forces for simulations of traction vehicles running on adhesion limit
- Calculation of creep forces in multi-body dynamics
 - A time-saving method
- Extension of creep force model by decreasing friction coefficient
 - Limitations of this method
- New model of creep forces for traction vehicles running on adhesion limit
- Parameter identification from measurements
 - Model validation by comparison of simulations and measurements
- Conclusions
Creep Force Models in Vehicle Dynamics and Drive Dynamics => Demand of one Common Model

- Possible for use in vehicle dynamics (small creep)
- Used for longitudinal and lateral directions
- Function of creep

- Necessary for drive dynamics (large creep - slip)
- Usually used only for longitudinal direction
- Function of slip velocity
Demand for Creep Force Model Suitable for Simulations of Traction Vehicles Running on Adhesion Limit

Difference dry - wet rail:
- Reduced initial slope
- Adhesion optimum at large creep on wet or polluted rail

State-of-the-art:
- Modells with decreasing section published
- Agreement only for dry and clean contact conditions
- No simple model to simulate real wet and/or polluted conditions
Calculation of Creep Forces in Vehicle Dynamics

Wheel-rail forces are functions of at least four independent variables (multi-dimensional problem):

\[F_x, F_y = f(s_x, s_y, \omega, a/b, Q, f) \]

- creepages
- shape of the contact area

The calculation is repeated many times for each wheel in each integration step

\[\rightarrow \text{the calculation time is very important} \]
A Time-Saving Method for Calculation of Creep Forces in Multi-body Simulations

- Compromise between calculation time and necessary accuracy
- Magnitude of the resultant creep force as integration of the shear stress distribution
- Effect of spin included - based on integration of tangential stress distribution caused by pure spin and on Kalker’s results
- Simple algorithm - no discretisation or iteration loops necessary
- Calculation time comparable with saturation functions or look-up tables
- Accuracy comparable with FASTSIM
- Method available in ADAMS/Rail, SIMPACK, GENSYS and used in other tools as well
Friction Coefficient Dependent on Slip (Creep) Velocity

- Friction coefficient decreasing with slip velocity
- Reduction of Kalker's factor
 - Kalker's factor = 1
 - Kalker's factor < 1
Limitations of the Model with Decreasing Friction Coefficient

- Disagreement mainly for bad adhesion conditions (contaminated or wet rail)
Principle of the Extended Model for Large Creep

- Decrease of shear stiffness with increasing creep
- Modelled by two reduction factors

![Graph showing the decrease of shear stiffness with increasing creep](image)

- **k_1**
- **k_2**
Extended Model for Large Creep Applications

- Different reduction factors k_A in the area of adhesion and k_S in the area of slip
Parameter Identification from Measurements

- Measurements with GM Locomotive SD 45X
 (Logston-Itami, USA, 1980)
Parameter Identification from Measurements

- Measurements with Bombardier Locomotive SBB 460, watered rails (Switzerland, 1992)
Parameter Identification from Measurements

- Measurement with Siemens Locomotive Eurosprinter (DB 127), dry rails
 (Engel - Beck-Alders, Germany, 1998)

![Graph showing parameter identification from measurements.](image)
Typical Parameters for Real Wheel-Rail Contact

- Three additional parameters:

<table>
<thead>
<tr>
<th>Model parameter</th>
<th>dry</th>
<th>wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_A</td>
<td>1.00</td>
<td>0.30</td>
</tr>
<tr>
<td>k_S</td>
<td>0.40</td>
<td>0.10</td>
</tr>
<tr>
<td>μ_0</td>
<td>0.55</td>
<td>0.30</td>
</tr>
<tr>
<td>A</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>B (s/m)</td>
<td>0.60</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Extended Model for Large Creep Applications

- Influence of longitudinal, lateral, spin creepages and the shape of the contact ellipse considered

$$\omega_B = 0 \text{ rad/m}$$
$$a/b = 1$$
Extended Model for Large Creep Applications (2)

- Influence of longitudinal, lateral, spin creepages and the shape of the contact ellipse considered

\[\omega_B = 10 \text{ rad/m} \]
\[a/b = 3.5 \]
Extended Model for Large Creep Applications (3)

- Influence of vehicle speed
Influence of Tractive Force on the Self-Steering Model of Locomotive SBB 460 (ADAMS/Rail)

Mechanism of Wheelset Coupling:
- Wheelset
- Linkage
- Coupling shaft
- Axle box

294 Degrees of Freedom
Simulation of Adhesion Test with Locomotive SBB 460

- Output time plots - leading bogie

- Curve: $R = 400$ m
- Vehicle speed: $V = 70$ km/h
- Rail conditions: wet
Co-Simulation of Vehicle Dynamics and Traction Control

Traction Controller
(MATLAB-SIMULINK)

Vehicle Model
(SIMPACK)

\[\omega_{R3}, \omega_{R4}, V, M_{R3}, M_{R4} \]
Vehicle Model: Test Locomotive DB 128 (12X)

- Extended multi-body model
 - Vehicle model
 - Traction chain with torsionally elastic wheelset
Parameter Identification of Creep Force Model from Measured Creepforce-Creep-Functions

- One parameter set considers the influence of:
 - Vehicle speed
 - Longitudinal creep
 - Lateral creep
 - Spin
 - Contact geometry
 - Normal force
Reaction of Traction Control on Sudden Worsening of Adhesion Conditions

- Starting on straight track
- Sudden decrease of friction coefficient
Comparison Calculation - Measurement

- Starting and acceleration of a test composition on curved sloping track (Kanderviadukt, Switzerland, August 2001)

Longitudinal guiding force
(Difference left - right)

- Measurement wheelset 3
- Measurement wheelset 4
- Calculation wheelset 3
- Calculation wheelset 4

<table>
<thead>
<tr>
<th>Distance [m]</th>
<th>Force [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-20</td>
</tr>
<tr>
<td>100</td>
<td>-15</td>
</tr>
<tr>
<td>200</td>
<td>-10</td>
</tr>
<tr>
<td>300</td>
<td>-5</td>
</tr>
<tr>
<td>400</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>5</td>
</tr>
<tr>
<td>600</td>
<td>10</td>
</tr>
<tr>
<td>700</td>
<td>15</td>
</tr>
</tbody>
</table>

- Right curve 300 m
- Left curve 385 m
- Right curve 290 m
Conclusions

- The proposed method enables computer simulations of complex vehicle system dynamics including running and traction dynamics.
- Influence of speed, shape of the contact ellipse, longitudinal, lateral and spin creep is considered using one parameter set.
- The method can be used to model the creep forces based on the measured creepforce-creep-functions.
- If no measurements are available, the parameters recommended for typical wheel-rail contact conditions can be used in engineering applications.
- The method was used in complex simulations and validated by comparisons with measurements.